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This paper presents the analysis and numerical solution for the axisymmetric 
analogue of the problem considered by Proudman & Johnson (1962) and Robins 
& Howarth (1972). 

1. Introduction 
The purpose of this paper is to extend the work of Proudman & Johnson 

(1962) and Robins & Howarth (1972) on boundary-layer growth at a two- 
dimensional rear stagnation point to the axisymmetric problem (e.g. the rear of 
a sphere). The analysis follows closely (at least in principle) that of the above 
two papers, where it is set out in detail; consequently the exposition here will 
be kept as short as possible. 

2. Equations of motion and similarity solution 
With a non-dimensional stream function F, non-dimensional boundary-layer 

normal co-ordinate y and non-dimensional time t ,  the equations of motion and 
the boundary conditions give the foIIowing problem for F, corresponding t o  
equations (2.5) and (2.6) in Robins & Howarth: 

Fvvy - 2FFvv - 1 + F: = Fvt, 
together with F=Fv=O on y = O  for t + O ,  

Fv+l as y-+co, 

Fv = I at  t = 0 for y 4 0. 

The factor of 2 in (2.1) is the only difference at  this stage between the two- 
dimensional and axisymmetric cases. Following Proudman & Johnson, we seek 
a similarity solution of the inviscid form of (2.1), and also assume exponential 
decay of vorticity as y -+ co. It turns out that the similarity solution is of the form 

F(y, t )  = e2tf(ye-2t). (2.3) 

Hence the relevant outer variable 7 is given by 7 = c - ~ ~ ,  and we obtain the stream 
function in the outer region, say F(y, t )  = G(7, t ) ,  satisfying 

e-6tG,,, - 2e-4t GG,, - 1 -k e-4t G: = e-2t (Gqt - 2G, - 27G,J, (2.4) 

with G,(yst) --f eZt as q -+ 00. (2.5) 
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The inner co-ordinate will be y itself, so we formally write P(y, t )  = g(y, t )  in 
this region and obtain the inner equation 

g,,, - 2gg,, - 1 + 9; = g y t ,  

with boundary conditions 
g = g , = O  on y = O .  

3. The analytical solution 

expansion is found to be 
Pollowing a technique identical t o  that of Robins & Howarth, the outer 

(3 .1)  G(% 0 = e"to(7)  +Fl(Y) + (e-t/A) &(7), 
where F, satisfies 

2(P0-7)F: + 1 -ahz = 0, Po(0) = 0, FA(?) -+ 1 exponentially as 7 -+ co, (3 .2)  

with solution 
7 = - 2 A ( ~ - F o ) 4 - 4 A 2 1 ~ g [ 1  -(7-&)4/2A]. (3.3)  

This is the axisymmetric similarity solution, first obtained by Johnson in her 
Ph.D. thesis, though not published elsewhere. The constant A corresponds to 
the constant c in the two-dimensional case, and again represents an uncertainty 
in the precise location of the time origin. The functions Pl and P, satisfy 

( F ~ - - ) P ~ - ( l + F ~ ) P ~ + P b t ,  = 0, t ; ( c o )  = 0, (3 .4 )  

-F;= A,Y2+A;(1-  Y ) ,  (3 .5 )  

2 (F0-?)P'~-(2Fh+3)P~+2P~P2 = 0, FL(co) = 0, (3 .6)  

with solution 

where Y = 1 +FA, and 

with solution 

P, = Az(2Y - 1 )  +AL{Yf( l+  Y )  ( 2  - Y ) 2 +  2(2Y - 1 )  ~in -~( iY) i ] .  (3 .7 )  

Here A,, A;,  A ,  and A; are constants to be determined by matching with the 
inner solution. 

Similarly, the inner expansion is found to be 

where f; - 2f; - 1 +fa = 0, fO(O) = fA(0) = 0 (3 .9)  

(this is the equation for the solution for a forward axisymmetric stagnation point, 
with a change in sign info; it will be seen that in order to match with the outer 
solution, the correct asymptotic form will be 

fo - -y+&+exp, (3 .9a )  
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obtained by choosing f:(O) = - 1.3120 in its numerical integration). We then have 

(3.10) f’l’ - 2fof; + (2fi + 1)f; - 2 j 3 1  = 0, f,(O) = f;(o) = 0, 

f’:-2fo.G+2(f;,+ l)f;-2f:fi = 2fif’;-f;2, fZ(O) = f ; , ( O )  = 0, (3.11) 

f ~ - Z f , f ~ + ( 2 f i + ~ ) f ~ - 2 ~ : f ~  = 0, f g p )  = f i ( O )  = 0. (3.12) 

The asymptotic forms of these functions are 

f, N ul{$yg - 6yQ + ($az + +) y-4 + O(y-+)) + a; + exp, (3.13) 

(3.14) 

(3.15) 

f, N - *yz + (az + 46) y- 28a; y i  - 3 logy + (a; - az6- &dZ) + O(y-4) + exp, 

f& N a+(+@ - Sy-4 + O(y-2)) + ai + exp, 

for some constants a,, u;, u,, a;, at and ui. 
Although these solutions were originally obtained in the usual step-by-step 

manner, they are presented together for brevity. For the same reason we shall 
here do the matching all a t  once. Expanding the outer solution for small q, 
and rewriting in inner variables, we obtain 

e--2t e-bt 

A8 
+ { - &y2 + (2A, + +A;) y + 2%A,y*} A2 + ?A; ya - + O(e-3t). (3.16) 

We see thatf,, N - y as y -+ 00, as previously stated, hencef,”(O) = - 1.3120, and 
the constant 6 is then 0.568 .... We then need A; = 6. Next a, = 42. To satisfy 
this we needf;(O) = 1.2072 ..., and u; is then 0-1205. Then A,  = - a; = - 0.1205. 
Also uz = 2.4, and a8 = 4 4 .  

As in the two-dimensional problem, we have some indeterminacy in that A,  
and A; are not determined. They are found by comparison with the numerical 
solution. Note finally that logarithmic terms will occur at the next stage of the 
expansion, and also that, as in the two-dimensional case, it can be shown that 
linearized eigenfunctions of the inner problem (cf. Kelly 1962) can be relegated 
to a point further on in the expansion. 

4. Numerical solution and comparison with numerical resdts 
The numerical integration of (2.1) and (2.2) was undertaken in exactly the 

same way as in the two-dimensional case, and the details will not be repeated 
here. The f i s t  task in the comparison of analytical and numerical results is to 
verify that (3.3) is the relevant first outer solution, as was done by Proudman & 
Johnson for the two-dimensional case. A first integral of (3.1) is 

A(I+PA) = (q-&)*. (4.1) 

A graph of e-t (y-P)* against l$ does indeed give a straight line, except near 
y = 0, as expected, and the value of A that emerges is 

A = 0.255. (4.2) 
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FIGURE 1. (a) Axisymmetric skin friction. (b) Axisymmetric displacement thickness. 

Next, using the same procedure as in Robins & Howarth, we find that 

A ,  = -0.86, A; = 0.11. (4.3) 

Curves of analytical and numerical results for the non-dimensional skin 
friction fyy (0, t )  and displacement thickness 

of the whole flow are presented in figures l ( a )  and (b) .  S,, S ,  and 8, denote 
respectively one-, two- and three-term approximations. 

The value o f t  at  which the skin friction first becomes negative was found to 
be t = 0.595. Boltze’s estimate for this time from the series for small t (see 
Schlichting 1960, p. 128) developed by Goldstein & Rosenhead (1936) and Squire 
(1954) was 0.589. As a matter of interest, the next two terms of this series were 
calculated by solving the associated differential equations numerically, and 
Shanks’s transformation was then applied, twice. The resulting skin-friction 
curve is marked A .  It will be seen that, taken together, the two series predict the 
skin fricbion over practically the whole of the time range. The large time series 
is valid back to about t = 2.25, which is better than in the two-dimensional case; 
however, it should be borne in mind that once reverse flow has set in, the ex- 
ponential growth rate is twice as fast as in the two-dimensional case, and so 
presumably the similarity solution emerges more quickly. 
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